

WEBADE

Connection Pooling Guide

Date: July 20, 2012

Revision: 1.5

Vivid Solutions Inc.

Suite #1A, 2328 Government St.

Victoria, BC V8T 5G5

Phone: (250) 385-6040

Fax: (250) 385-6046

Website: www.vividsolutions.com

http://www.vividsolutions.com/

 Connection Pooling Guide

Page 2 of 12

Document Change Control

REVISION NUMBER DATE OF ISSUE AUTHOR(S) DESCRIPTION

1.0 Dec 4, 2003 Jason Ross Initial Document

1.1 Dec 7, 2003 Jason Ross Updated with some new
configuration settings

1.2 June 14, 2005 Jason Ross Updated to include
connection wrapping
documentation

1.3 August 11, 2005 Jason Ross Updated the
documentation on
disabling connection
wrapping and connection
wrapper logging.

1.4 November 4, 2005 Jason Ross Updated with minor
layout changes.

1.5 January 31, 2012 Andrew Wilkinson Corrected a code sample.

 Connection Pooling Guide

Page 3 of 12

Table of Contents

1. INTRODUCTION ... 5

2. NEW FEATURES ... 6

2.1 WRAPPED CONNECTION CLASSES ... 6

2.1.1 RETRIEVING THE WRAPPED OBJECT ... 7

2.1.2 DISABLING WEBADE CONNECTION WRAPPING .. 7

2.2 DATABASE CONNECTION IDLE TIMEOUTS .. 8

2.3 DATABASE PINGING ... 8

2.4 SIMPLIFIED CONNECTION POOL CONFIGURATION ... 8

2.5 CONFIGURABLE BLOCKING WAIT TIMES .. 8

2.6 IMPROVED LOGGING AND DEBUGGING ... 8

2.7 OPTIONAL NON-POOLING CONNECTIONS .. 9

3. CONFIGURATION ... 10

3.1 CONNECTION POOL SETTINGS ... 10

3.1.1 DATABASE URL ... 10

3.1.2 DATABASE USER .. 10

3.1.3 DATABASE PASSWORD ... 10

3.1.4 MIN CONNECTIONS... 10

3.1.5 MAX CONNECTIONS .. 10

3.1.6 MAX CONNECTION IDLE TIME ... 11

3.1.7 MAX CONNECTION WAIT TIME .. 11

3.1.8 MONITOR SLEEP TIME ... 11

3.1.9 POOL CONNECTIONS FLAG ... 11

3.1.10 PING CONNECTIONS FLAG .. 11

4. FUTURE CHANGES ... 12

4.1 CHANGING THE WAIT QUEUE TO A PRIORITY QUEUE .. 12

4.2 FORCE QUIT AND MONITORING OF LOST CONNECTIONS ... 12

4.3 DYNAMIC POOL SETTINGS .. 12

4.4 JMX SUPPORT ... 12

 Connection Pooling Guide

Page 4 of 12

Ministry of Forests WebADE

Page 5 of 12

1. INTRODUCTION

This document details the changes to the WebADE core API, regarding the new

implementation of connection pooling, replacing the Oracle reference implementation (found

in classes12.zip).

Ministry of Forests WebADE

Page 6 of 12

2. NEW FEATURES

Below is a description of the new additions to the WebADE connection pooling, and changes

to the core API.

2.1 WRAPPED CONNECTION CLASSES

The WebADE connection pooling API, by default, now wraps many of the classes in

the java.sql package of the underlying JDBC implementation with internal WebADE

classes implementing the same standard JDBC interfaces.

By wrapping these classes, WebADE can step in and handle situations where bugs in

a deployed application cause database resources to be left open, such as where a

connection is not closed due to an exception being thrown in the application code. In

a situation such as this, WebADE can clean up the open resource on garbage

collection.

Instances of the following classes are wrapped by WebADE classes, when returned

by calls to the WebADE API:

- java.sql.CallableStatement

- java.sql.Connection

- java.sql.PreparedStatement

- java.sql.ResultSet

- java.sql.Statement

Because WebADE wraps these objects with an internal class implementing the

appropriate java.sql interface, you cannot directly cast these objects to a database-

specific implementation class, like OracleConnection, OracleStatement, and

OracleResultSet.

If you require access to these wrapped database-specific implementation objects,

you can either cast the returned object to the WebADE-wrapper implementation

class and call a special getWrappedXXX() method on this object or disable the

connection wrapping by setting the appropriate system property.

Ministry of Forests WebADE

Page 7 of 12

2.1.1 RETRIEVING THE WRAPPED OBJECT

Below are code sample for retrieving the wrapped database-specific

implementation objects.

CONNECTION CLASS

import ca.bc.gov.webade.dbpool.WrapperConnection;

...

Application app = ...

Connection conn = app.getConnectionByAction(...);

WrapperConnection wconn = (WrapperConnection)conn;

Connection wrappedConn = wconn.getWrappedConnection();

STATEMENT CLASS

import ca.bc.gov.webade.dbpool.WrapperStatement;

...

Application app = ...

Connection conn = app.getConnectionByAction(...);

Statement stmt = conn.createStatement();

WrapperStatement wstmt = (WrapperStatement)conn;

Statement wrappedStmt = wstmt.getWrappedStatement();

NOTE: This code sample also works for WrapperPreparedStatement and

WrapperCallableStatement classes, as these classes extend WrapperStatement.

RESULTSET CLASS

import ca.bc.gov.webade.dbpool.WrapperResultSet;

...

Application app = ...

Connection conn = app.getConnectionByAction(...);

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery(...)

WrapperResultSet wrs = (WrapperResultSet)rs;

ResultSet wrappedRs = wrs.getWrappedResultSet();

2.1.2 DISABLING WEBADE CONNECTION WRAPPING

In extreme circumstances, it may be necessary to disable the WebADE

connection wrapping altogether. This is not recommended, but, if needed, it can

Ministry of Forests WebADE

Page 8 of 12

be done by setting the "webade.use.wrapper.connections" system property to

“false”.

NOTE: This should be set as a system property at the java command line, as

follows:

-Dwebade.use.wrapper.connections=false

This property should only be set as a short term fix for deployment situations,

where the deployed application is not behaving properly.

2.2 DATABASE CONNECTION IDLE TIMEOUTS

Database connections are now closed, if the connection has been sitting available in

the pool past a given idle time, in minutes.

2.3 DATABASE PINGING

Database connections can be configured to be “ping”-ed before being handed out to

the application, to ensure that the database connection has not been closed, due to

databases going down.

2.4 SIMPLIFIED CONNECTION POOL CONFIGURATION

WebADE connection pool configuration is now much more simplified, by default not

requiring an application to write any code to get the connection pools initialized.

Previously, the application developer was required to create each connection pool

and register these pools with the WebADE.

2.5 CONFIGURABLE BLOCKING WAIT TIMES

Previously, applications could only either block indefinitely while waiting for a

connection, or not block at all. Application threads requesting connection pools can

now have a third option to obtaining connection from the pool. Block for a specific

amount of time (In milliseconds).

2.6 IMPROVED LOGGING AND DEBUGGING

Logs are now output when a connection is retrieved from the queue, returned to the

queue, and when database errors occur. These logs will indicate the target pooled

connection (by hash code) and which pool it is associated with (by role).

When a connection, statement, or result set is not closed properly, by calling the

close() method on the wrapper object, at garbage collection time, the wrapper object

will print a full stack trace at the time the wrapper object was created, to help the

Ministry of Forests WebADE

Page 9 of 12

developer to locate the section of offending code in their application. (See below for

an example)

WARN ca.bc.gov.webade.dbpool.WrapperConnection - Connection: 23047631 closed

by garbage collector. Connection checked out

 at

ca.bc.gov.webade.dbpool.WebADEConnectionCache.getConnection(WebADEConnectionC

ache.java:187)

 at

ca.bc.gov.webade.dbpool.ConnectionCacheTester.openConnection(ConnectionCacheT

ester.java:76)

 at

ca.bc.gov.webade.dbpool.ConnectionCacheTester.testUnclosedConnection(Connecti

onCacheTester.java:62)

 at

sun.reflect.NativeMethodAccessorImpl.invoke0(NativeMethodAccessorImpl.java:Na

tive Method)

 at

sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

 at

sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.

java:25)

 at java.lang.reflect.Method.invoke(Method.java:324)

 at junit.framework.TestCase.runTest(TestCase.java:154)

 at junit.framework.TestCase.runBare(TestCase.java:127)

 at junit.framework.TestResult$1.protect(TestResult.java:106)

 at junit.framework.TestResult.runProtected(TestResult.java:124)

 at junit.framework.TestResult.run(TestResult.java:109)

 at junit.framework.TestCase.run(TestCase.java:118)

 at junit.framework.TestSuite.runTest(TestSuite.java:208)

 at junit.framework.TestSuite.run(TestSuite.java:203)

 at

org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRun

ner.java:478)

 at

org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.run(RemoteTestRunner.j

ava:344)

 at

org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.main(RemoteTestRunner.

java:196)

2.7 OPTIONAL NON-POOLING CONNECTIONS

It is possible to prevent connections from being pooled, by setting the appropriate

flag in the configuration settings.

Ministry of Forests WebADE

Page 10 of 12

3. CONFIGURATION

3.1 CONNECTION POOL SETTINGS

Pools, by default, now require no initialization from the application developer. The

default settings for each connection pool parameter are described below. If you wish

to override the settings for your application roles’ connection pools, modify the

appropriate columns in the WebADE PROXY_CONTROL table for the role’s connection

poll table entry.

3.1.1 DATABASE URL

The Database URL is a properly formatted JDBC URL for the target database. This

field is mandatory, and will be retrieved from the WebADE database by the

Application object.

3.1.2 DATABASE USER

The Database User is a user id with access to the target database. This field is

mandatory, and will be retrieved from the WebADE database by the Application

object.

3.1.3 DATABASE PASSWORD

The Database Password is the password for the above user id. This field is

mandatory, and will be retrieved from the WebADE database by the Application

object.

3.1.4 MIN CONNECTIONS

The minimum number of connections that will be open at any given time. This field

is optional, with a default value of 0.

3.1.5 MAX CONNECTIONS

The maximum number of connections that will be open at any given time. This field

is optional, with a default value of 5.

Ministry of Forests WebADE

Page 11 of 12

3.1.6 MAX CONNECTION IDLE TIME

The maximum time, in minutes, a connection should remain open while available in

the pool. If the idle time is set to 0, the connection will be left open indefinitely.

This field is optional, with a default value of 10 minutes.

3.1.7 MAX CONNECTION WAIT TIME

The maximum time, in milliseconds, a thread should block while waiting for an

available connection. If the wait time is set to 0, the thread will block indefinitely. If

the wait time is set to –1, the thread will not block at all. If the thread waits past its

wait time (or is set not to block), the connection request will return null. This field is

optional, with a default value of 0 (Indefinite blocking).

3.1.8 MONITOR SLEEP TIME

The time the cache monitor thread will wait, in minutes, between connection pool

checks. During each check, the monitor will close any connections in the pool that

have been idle for longer than the max connection idle time. This field is optional,

with a default value of 1 minute.

3.1.9 POOL CONNECTIONS FLAG

A flag indicating whether or not to pool database connections. Valid values are

“true” and “false”. This field is optional, with a default value of true.

3.1.10 PING CONNECTIONS FLAG

A flag indicating whether or not to ping database connections before handing them

out. This setting is intended to allow a testing of the connection, before the

connection is handed out, to prevent closed connections from being used by an

application. If the connection is closed, the error is trapped, and a good connection

is created, and handed to the requesting thread. Valid values are “true” and “false”.

This field is optional, with a default value of false.

Ministry of Forests WebADE

Page 12 of 12

4. FUTURE CHANGES

4.1 CHANGING THE WAIT QUEUE TO A PRIORITY QUEUE

Allow requests for connections to have a priority, to allow behind-the-scenes

processes (batch processes) to be superseded by user requests for connection pools,

for more responsive user requests.

4.2 FORCE QUIT AND MONITORING OF LOST CONNECTIONS

Allow the connection pool monitor to forcefully terminate connections that have been

checked out for too long. This is particularly useful for connections that were not

closed before the code using them loses scope.

4.3 DYNAMIC POOL SETTINGS

Allow connection pool settings to be modified on the fly, instead of only at

initialization time, as it is now.

4.4 JMX SUPPORT

Add support for the Java Management Extensions API. This will allow the remote

administration/monitoring of the pools at runtime. It could also allow for actually

growing and shrinking of the pools without stopping the application. The JMX

support could also be expanded to monitor and manage all aspects of the WebADE.

Once the JMX infrastructure is in place, it is simply a matter of creating a MBean

(Managed Bean) to instrument the WebADE objects. Little effort with great gains.

